BLOW-UP SYLLABUS ENGINEERING PHYSICS (18PHY12/22) (Common to all Branches) (Effective from the academic year 2018-19) <u>MODULE – 1</u>

SI.	Details	Durati	Remarks
1	1 1 Free Oscillations:	1/2hr	No numerical
1	Definition of SHM. Characteristics. Examples and Derivation	1/2111	problems
	of differential equation of motion for SHM starting from		problems
	Hookes' law $\frac{d^2y}{dt^2} + \frac{k}{dt}y = 0$ and mention its solution		
2	$\frac{dt^2}{m^2}$ Mechanical simple harmonic oscillator:	1and	Numerical
2	Mass suspended to spring (vertical vibrations) - Description	1/2hr	nrohlems on
	Mention of Expression for time period/frequency. Definition	1/2	T.f and k
	of force constant and its significance. Derivation of		- ,
	expressions for force constants for series and parallel		
	combination of springs. $(k_s = \frac{k_1k_2}{k_1+k_2} \text{ and } k_p = k_1 + k_2)$		
	Complex notation of simple harmonic motion (Ae ^{$i(\omega t + \varepsilon)),$}		
	Phasor representation of simple harmonic motion		
3	Definition of free oscillations with examples, mention the	1/2hr	Numerical
	equation of motion, Natural frequency of vibration –		problems on
	Qualitative discussion.		natural frequency
4	1.2 Damped oscillations:	1and	Numerical
	Definition with examples. Derivation of decaying amplitude,	1/2hr	problems on
	Discussion of 3 cases viz, over damping, critical damping and		damping and
	underdamping.		quality factor
	Quality factor: Definition, equation and its significance,		
5	1.3 Forced oscillations:		Numerical
	Definition with examples. Derivation of expressions for		problems
	amplitude and phase of forced vibrations		
	Discussion of 3 cases (i) $p < \omega$, (ii) $p = \omega$ and (iii) $p > \omega$		
	Resonance: Definition, Examples, Condition for resonance	1and	
	and expression for maximum amplitude (just mention).	1/2hr	
	Sharpness of Resonance: Definition and significance,	,	
	Cualitation the effect of damping on sharpness of resonance		N
	Qualitative discussion of Examples of Resonance:		No numerical
	neimionz Resonator- Description and mention of		problems
(1 h	Numarical
6	1.4 SHUCK WAVES: Definition of Mach number algorithmation of chiests based on	Inr	numerical
	Mach number (subsenic supersonic Transonic and		Mach number
	hypersonic)		Machinumber
	Definition and properties of shock waves		
7	Definition of control volume. Laws of conservation of mass	1 and ¹ / ₂	No numerical
	energy and momentum (Statement and equations)	hr	problems
8	Construction and working of Reddy shock tube Applications	1	No numerical
	of shock waves: Qualitative (minimum 5 applications)		problems
9	Tutorial classes	2hr	Involvement of
			students in
			respect of their
			doubts about the
			module and
			numerical
			problems

Sl.	Details	Durati Remarks	
No		on	
1	2.1 Elasticity: Explain elasticity and plasticity. Give some examples for good elastic materials. Mention the importance (Engineering) of elastic materials. concept of stress and strain. Discuss two types of stresses namely tensile stress and compressive stress. Briefly discuss the effect of stress, temperature, annealing and impurities on elasticity	1 and ½ hr	No numerical problems
2	Strain hardening and softening: just explain what is strain hardening (strengthening of material by plastic deformation) and hardening co efficient and softening. No detailed discussion of processes.	1/2hr	No numerical problems
3	State and explain Hookes' law, stress strain curve, elastic and plastic limits. Elastic modulus, define three different elastic moduli. Write equations for each moduli like $Y = \frac{FL}{A\Delta L}$ & so on.	1/2hr Numerical problems on Υ, η and K	
4	2.2 Poisson's ratio: Define lateral strain and linear strain and hence Poisson's ratio $\sigma=\beta/\alpha$ ($\alpha=$ linear strain coefficient) and ($\beta=$ lateral strain coefficient)	1hr	Numerical problems
5	Relation between shear strain, longitudinal and compression strain. Show that longitudinal strain + compression strain = shear strain by considering a cubical elastic body		No numerical problems
6	Derive the relation between Y, η and σ		Numerical
7	Derive the relation between K, Y and σ	1 and	problems
/	Derive the relation between K, η and Y	1/2hr	
8	Discuss the limiting values of σ and limitations of Poisson's ratio	,	No numerical problems
9	2.3 Bending of beams: Definition of beams, different types of beams and mention their Engineering applications. Definition of neutral surface/plane and neutral axis.	1/2hr	No numerical problems
10	Define bending moment. Derive the expression for bending moment in terms of moment of inertia $(BM = \frac{Y}{n}I_q)$	1 hr	No numerical problems
11	Mention the expression for bending moment for circular and rectangular cross sections		Numerical problems
12	Describe a single cantilever and hence derive the expression for Y (for rectangular beam) (only depression)	½ hr	Numerical problems
14	2.4 Torsion of a cylinder: Twisting couple on cylindrical wire, explain torsional oscillations, derive the expression for couple per unit twist for a solid cylinder	1 hr	Numerical problems
15	Mention the expression for Time period of torsional oscillations $T = 2\pi \sqrt{I_g/C}$. Brief explanation of applications of torsional pendulum		Numerical problems
16	Tutorial classes	2hr	Involvement of students in respect of their doubts about the module and numerical problems

Sl	Details	Dura	Remarks	
No		tion		
1	Only Cartesian co ordinates must be used in both theory	1 and $\frac{1}{2}$	Numerical	
	and problems	hr	problems of div	
	3.1 Maxwell's equations:		and curl	
	Fundamentals of vector calculus: Briefly explain scalar			
	product, vector product, ∇ operation, concept of divergence,			
	gradient and curl along with physical significance and			
	examples like Div and curl of E and B			
2	Discuss the three different types of integrations <i>viz</i> linear,		No numerical	
	surface and volume integrations. Derivation of Gauss		problems	
	divergence theorem, mention Stokes' theorem			
3	Explain briefly Gauss flux theorem in electrostatics and	½ hr	Numerical	
	magnetism, Ampere's law, Biot-Savart's law and Faraday's		problems	
4	laws of electromagnetic induction	1/1		
4	Discuss continuity equation, definition of displacement	≁2 nr	Numerical	
	current(1), expression for displacement current, Maxwell-		problems on (1 _d)	
	Ampere's law			
5	List of four Maxwell's equations in differential form and in	½ hr	No numerical	
	vacuum	4 144	problems	
6	3.2 EM Waves:	1 and $\frac{1}{2}$	Numerical	
	Derive wave equation in terms of electric field using	hr	problems on	
	Maxwell's equations. Mention of plane electromagnetic		calculation of c	
	waves in vacuum along with the equations for E, B and C in		and on equations	
7	terms of μ_0 and ϵ_0 and ϵ_0 and ϵ_0 and ϵ_0 and ϵ_0		OI E dIIU D	
/	three types of polarization namely linear elliptical and		numericai	
	circular polarization of F		problems	
8	3.3 Ontical fiber:	1 and $\frac{1}{2}$	Numerical	
Ũ	Description of propagation mechanism of light through an	hr	problems on θ	
	optical fiber. Angle of acceptance and numerical		Numorical	
	aperture(NA): Theory with condition for propagation		nrohlems on angle	
9	Modes of propagation and V number and types of optical		of acceptance. NA.	
	fibers(qualitative)		V number, modes	
			of propagation	
10	Attenuation: Definition of attenuation, name the three types	2hr	Numerical	
	of attenuation, Causes of attenuation: Explain absorption,		problems on	
	scattering and radiation losses. Mention the expression for		attenuation	
	attenuation coefficient		coefficient	
11	Application of optical fiber: Point to point communication:		No numerical	
	Explain with the help of block diagram. Merits and de merits		problems	
	of optical fiber communication.			
12	Tutorial classes	2hr	Involvement of	
			students in	
			respect of their	
			modulo and	
			numerical	
			problems	

Sl No	Details	Dura tion	Remarks
1	4.1 Ouantum Mechanics:	¹ / ₂ hr No numerical	
	Introduction to need of Quantum mechanics with a		problems
	discussion of Planck's equation for energy density		-
2	Wave nature of particles-De Broglie hypothesis followed	½ hr	Numerical
	by wavelength equations, extended to accelerated electron		problems
3	Heisenberg's uncertainty principle-Statement and mention	1 hr	Numerical
	the three uncertainty relations. Applications of uncertainty		problems
	principle- to show the non confinement of electrons in the		
	nucleus (by considering diameter of nucleus). Energy		
	relativistic equation shall not be considered.		
4	Schrodinger's time independent wave equation –Setting up	1 hr	No numerical
	of Schrodinger's time independent wave equation using		problems.
	$\psi = Ae^{i(kx-wt)}$.		
5	Significance of Wave function –qualitative statement		No Numerical
	regarding wave function, Probability density, Max born		problems
	interpretation, Normalization, and Properties of wave		
	function		
6	Application Schrodinger's wave equation to particle in 1-D		Numerical
	potential well of infinite height and obtain the energy Eigen	1hr	problems
	values and eigen functions. Probability densities		
7	4.2 Laser:	½ hr	No numerical
	Brief discussion of spontaneous and stimulated processes –		problems
	Explanation of the process of induced absorption,		
	spontaneous and stimulated emission.	11	
8	Einstein's coefficients (expression for energy density) –	1 hr	Numerical
	derivation of energy density in terms of Einstein's co		problems
0	Production of a Lagar system - a brief explanation about		No numorical
9	active modium resonant cavity and exciting system		no numerica
10	Conditions for laser action-To explain population inversion		Numerical
10	and meta stable state		nrohlems
13	Principle: mention different modes of vibrations of CO.	2 hr	No numerical
	evaluation and working of CO lasor with one ray		problems
	explain construction and working of CO ₂ laser with energy		1
	level diagram experimental setup.		
14	Principle, Construction and working of semiconductor		numerical
	Lasers – Explain principle, construction and working of		problems
	homo junction semiconductor laser with energy level		
15	diagram and experimental setup.	1 /2h-r	No num origal
15	Application of Lasers in Defense (Laser range finder) –	1/2nr	No numerical
	qualitative explanation about application of laser as laser		problems
16	Application of Lagers in Engineering (Data storage)		No numorical
10	auglitative explanation about application of laser in data		nonumerical
	storage (compact disc. DVD)		problems
17	Tutorial classes	2 hrs	Involvement of
		2 111 5	students in respect
			of their doubts
			about the module
			and numerical
			problems

Sl.	Details	Dura	Remarks
No		tion	
1	5.1 Quantum free electron theory: Review of classical free electron theory (just mention who proposed it and what for it was proposed), mention the expressions for electrical conductivity based on classical free electron theory, and explain the failures of classical free electron theory (in terms of relation between conductivity and temperature, and relation between conductivity and free electron density, with specific examples)	½ hr	No numerical problems
2	Assumptions of quantum free electron theory, definition of density of states and mention the expression for density of states (No derivation)	1 and 1/2hr	Numerical problems on density of states,
3	Qualitative discussion of Fermi level, Fermi energy, Fermi-Dirac statistics, Fermi factor, Fermi factor at different temperatures (3 cases).		Fermi energy, Fermi factor
4	Derivation of the expression for Fermi energy at zero Kelvin. Mention the expression Fermi velocity and Fermi temperature. Expression for electrical conductivity in terms of Fermi velocity, mean free path and effective mass (No derivation).	½ hr	Numerical problems on Fermi velocity, conductivity
5	Success of quantum free electron theory (in terms of relation between conductivity and temperature, and relation between conductivity and free electron density, with specific examples)	⅓ hr	No numerical problems
6	5.2 Semiconductors: Fundamentals of semiconductor. Description of Fermi level in intrinsic semiconductor. Mention of expression for electron and hole concentration in intrinsic semiconductors. Derivation of relation between Fermi energy and energy gap for an intrinsic semiconductor.	1hr	No numerical problems
7	Derivation of the expression for electrical conductivity of semiconductors, Explanation of Hall effect with Hall voltage and Hall field, derivation of the expression for Hall coefficient.	1 hr	Numerical problems on conductivity, Hall effect
8	5.3 Dielectrics: Fundamentals of dielectrics. Polarisation, mention the relation between dielectric constant and polarization. Types of polarization. Polar and non-polar dielectrics	1 hr	No numerical problems
9	Definition of internal field in case of solids and mention of its expression for one dimensional case. Mention the expressions for internal field for three dimensional cases and Lorentz field. Derivation of Clausius-Mossotti equation.	1 hr	Numerical problems on internal field and Clausius-Mossotti equation
10	Description of solid, liquid and gaseous dielectrics with one example each. Qualitative explanation of applications of dielectrics in transformers.	1/2hr	No numerical problems
11	Tutorial classes	2hr	Involvement of students in respect of their doubts about the module and numerical problems

Text Books:

- 1. A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand & Company Ltd, New Delhi
- 2. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017
- 3. Concepts of Modern Physics-Arthur Beiser: 6th Ed;Tata McGraw Hill Edu Pvt Ltd- New Delhi 2006

Reference books:

- 1. Introduction to Mechanics MK Verma: 2nd Ed, University Press(India) Pvt Ltd, Hyderabad 2009
- Lasers and Non Linear Optics BB laud, 3rd Ed, New Age International Publishers 2011
 Solid State Physics-S O Pillai, 8th Ed- New Age International Publishers-2018
- 4. Shock waves made simple- Chintoo S Kumar, K Takayama and KPJ Reddy: Willey India Pvt. Ltd. New Delhi2014
- 5. Introduction to Electrodynamics- David Griffiths: 4th Ed, Cambridge University Press 2017

Module wise text books/Reference Books

Module	Article No	Text Book/Reference Book
I	1.1 1.2 1.3	1. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017
	1.4	1. Shock waves made simple- Chintoo S Kumar, K Takayama and KPJ Reddy: Willey India Pvt. Ltd. New Delhi2014
п	2.1 2.2 2.3 2.4	 Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017 Introduction to Mechanics — MK Verma: 2nd Ed, University Press(India) Pvt Ltd, Hyderabad 2009
III	3.1 3.2 3.3	 A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand & Company Ltd, New Delhi Introduction to Electrodynamics- David Griffiths: 4th Ed, Cambridge University Press 2017
IV	4.1	 A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand & Company Ltd, New Delhi Concepts of Modern Physics-Arthur Beiser: 6th Ed;Tata McGraw Hill Edu Pvt Ltd- New Delhi 2006 Lagers and Non Linger Option BB level 2rd Ed New Age
	4.2	I. Lasers and Non Linear Optics – BB laud, 3 Ed, New Age International Publishers 2011
V	5.1 5.2	 Concepts of Modern Physics-Arthur Beiser: 6th Ed;Tata McGraw Hill Edu Pvt Ltd- New Delhi 2006 Solid State Physics-S O Pillai, 8th Ed- New Age International Publishers-2018
	5.3	 A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand & Company Ltd, New Delhi