ELECTRONIC DEVICES SEMESTER – III (EC / TC)

[As per Choice Based Credit System (CBCS) scheme]

Course Code	18EC33	CIE Marks	40	
Number of LectureHours/Week	03	SEE marks	60	
Total Number ofLecture Hours	40 (8 Hours / Module)	Exam Hours	03	
CREDITS – 03				

Course Objectives: This course will enable students to:

- Understand the basics of semiconductor physics and electronic devices.
- Describe the mathematical models BJTs and FETs along with the constructional details.
- Understand the construction and working principles of optoelectronic devices
- Understand the fabrication process of semiconductor devices and CMOS process integration.

Module-1	RBT Level
Semiconductors Bonding forces in solids, Energy bands, Metals, Semiconductors and	
Insulators, Direct and Indirect semiconductors, Electrons and Holes,	
Intrinsic and Extrinsic materials, Conductivity and Mobility, Drift and	L1,L2
Resistance, Effects of temperature and doping on mobility, Hall Effect.	
(Text 1: 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1, 3.2.3, 3.2.4, 3.4.1, 3.4.2,	
3.4.3, 3.4.5).	
Module-2	
P-N Junctions	
Current flow at a junction reverse bios Peverse bios breakdown	
Zener breakdown avalanche breakdown Rectifiers (Text 1: 5.3.1.	
5.3.3. 5.4. 5.4.1. 5.4.2. 5.4.3)	L1.L2
Optoelectronic Devices Photodiodes: Current and Voltage in an	
Illuminated Junction, Solar Cells, Photodetectors. Light Emitting	
Diode: Light Emitting materials.(Text 1: 8.1.1, 8.1.2, 8.1.3, 8.2,	
8.2.1)	
Module – 3	
Bipolar Junction Transistor	
Fundamentals of BJT operation, Amplification with BJTS, BJT	
Fabrication, The coupled Diode model (Ebers-Moll Model), Switching	
operation of a transistor, Cutoff, saturation, switching cycle,	L1,L2
breakdown Base Resistance and Emitter crowding (Text 1.71 72	
73 751 76 771 772 773 775	
Module-4	
Field Effect Transistors	
Basic pn JFET Operation, Equivalent Circuit and Frequency	
Limitations, MOSFET- Two terminal MOS structure- Energy band	L1.L2
diagram, Ideal Capacitance – Voltage Characteristics and Frequency	,
Effects, Basic MOSFET Operation- MOSFET structure, Current-	
Voltage Characteristics.	

(Text 2: 9.1.1, 9.4, 9.6.1, 9.6.2, 9.7.1, 9.7.2, 9.8.1, 9.8.2).			
Module-5			
Fabrication of p-n junctions			
Thermal Oxidation, Diffusion, Rapid Thermal Processing, Ion			
implantation, chemical vapour deposition, photolithography, Etching,			
metallization. (Text 1: 5.1)	L1,L2		
Integrated Circuits			
of Other Circuit Elements. (Text 1: 9.1, 9.2, 9.3.1, 9.3.2).			
Course outcomes: After studying this course, students will be able			
to:			
 Understand the principles of semiconductor Physics 			
• Understand the principles and characteristics of different types of semiconductor devices			
• Understand the fabrication process of semiconductor devices			
• Utilize the mathematical models of semiconductor junctions and			
MOS transistors for circuits and systems.			
Question paper pattern:			
• Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.			
• Each full question can have a maximum of 4 sub questions.			
• There will be 2 full questions from each module covering all the topics of the module.			
• Students will have to answer 5 full questions, selecting one full question from each module.			

• The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Books:

- 1. Ben. G. Streetman, Sanjay Kumar Banergee, "Solid State Electronic Devices", 7thEdition, Pearson Education, 2016, ISBN 978-93-325-5508-2.
- 2. Donald A Neamen, Dhrubes Biswas, "Semiconductor Physics and Devices", 4th Edition, MCGraw Hill Education, 2012, ISBN 978-0-07-107010-2.

Reference Book:

- S. M. Sze, Kwok K. Ng, "Physics of Semiconductor Devices", 3rd Edition, Wiley, 2018.
- 2. A. Bar-Lev, "Semiconductor and Electronic Devices", 3rd Edition, PHI, 1993.