CONTROL SYSTEMS (Core Subject) B.E., VI Semester, Electrical and Electronics Engineering [As per Choice Based Credit System (CBCS) scheme]

	Choice Da	ased Credit Syste	lin (CDCS) scheme]			
Course Code		17EE61	CIE Marks	4	0	
Number of Lecture Ho	ours/Week	04	SEE Marks	6	0	
Total Number of Lectu	ure Hours	50	Exam Hours	0.	3	
		Credits -	04			
Course objectives:						
\Box To define a con	ntrol system					
\Box To explain the	necessity of feedb	back and types of feed	back control systems.			
□ To introduce th	he concept of trans	sfer function and its a	pplication to the modeling	of linear system	ns.	
□ To demonstrate	e mathematical m	odeling of control sys	tems.			
\Box To obtain trans	fer function of sys	stems through block d	iagram manipulation and	reduction		
☐ To use Mason'	's gain formula for	r finding transfer func	tion of a system			
□ To discuss tran	sient and steady s	state time response of	a simple control system.			
\Box To discuss the	stability of linear	time invariant system	s and Routh - Hurwitz cri	terion		
\Box To investigate	the trajectories of	the roots of the chara	cteristic equation when a	system parameter	er is varied.	
\Box To conduct the	e control system ar	alysis in the frequent	cy domain.			
\Box To analyze stal	bility of a control	system using Nyquist	plot.			
\Box To discuss stat	oility analysis usir	ng Bodeplots.				
To determine the co	ntroller or compe	nsator configuration a	and parameter values relat	ive to how it is		
connected to the cor	trolled process gi	ven the design specif	ications.			
Module-1					Teaching	
Introduction to contr	ol systems. Intro	duction classification	of control systems			
Mathematical models	s of physical syst	ems: Modelling of m	echanical system elements	s. electrical	10	
systems, Analogous sy	stems, Transfer f	unction, Single input	single output systems, Pr	ocedure for		
deriving transfer funct	ions, servomotors	, synchros, gear trains				
Revised Bloom's	Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing,					
Taxonomy Level			11.0			
Module-2						
Block diagram: Block	k diagram of a clo	sed loop system, pro	cedure for drawing block	diagram and	10	
block diagram reduction	on to find transfer	function.	-	-		
Signal flow graphs: (Construction of sig	gnal flow graphs, basi	c properties of signal flow	v graph, signal		
flow graph algebra, co	nstruction of sign	al flow graph for con	trol systems.			
Revised Bloom's L	L ₁ – Remembering	, L ₂ - Understanding,	L ₃ – Applying, L ₄ – Anal	ysing.		
Taxonomy Level						
Module-3					1	
Time Domain Analys	sis: Standard test	signals, time response	e of first order systems, tir	ne response of	10	
second order systems,	steady state error	s and error constants,	types of control systems.	-		
Routh Stability crit	t erion: BIBO sta	ability, Necessary c	onditions for stability, F	outh stability		
criterion, difficulties in formulation of Routh table, application of Routh stability criterion to linear						
feedback systems, rela	feedback systems, relative stability analysis.					
Revised Bloom's L	L_2 – Understanding	g, L ₃ – Applying, L ₄ –	Analysing, L ₅ – Evaluatir	ıg.		
Taxonomy Level						
Module-4						
Root locus technique	: Introduction, roo	ot locus concepts, cor	struction of root loci, rule	s for the	10	
construction of root lo	construction of root locus.					
Frequency Response analysis: Co-relation between time and frequency response – 2 nd order						
systems only.						
Bode plots: Basic factors G(iw)/H(jw), General procedure for constructing bode plots, computation						
of gain margin and phase margin.						
Revised Bloom's L	-1 – Remembering,	, L ₂ – Understanding,	L_3 – Applying, L_4 – Analy	vsing.		
Taxonomy Level					1	

B.E ELECTRICAL AND ELECTRONICS ENGINEERING(EEE) CHOICE BASED CREDIT SYSTEM (CBCS) SEMESTER - VI

17EE61 CONTROL SYSTEMS (Core Subject) (continued)

		-	
Module-5			
		Hours	
Nyquist plot: Principle of argument, Nyquist stability criterion, assessment of relative stability			
using Nyquist criterion.			
Design of Control Systems: Introduction, Design with the PD Controller, Design with the PI			
Controller, Design with the PID Controller, Design with Phase-Lead Controller, Design with Phase			
- Lag Controller, Design with Lead-Lag Controller.			
Revised Bloom's	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.		
Taxonomy Level			

Course outcomes:

At the end of the course the student will be able to:

- Discuss the effects of feedback and types of feedback control systems.
- Evaluate the transfer function of a linear time invariant system.
- Evaluate the stability of linear time invariant systems.
- Apply block diagram manipulation and signal flow graph methods to obtain transfer function of systems.
- Demonstrate the knowledge of mathematical modeling of control systems and components
- Determine transient and steady state time response of a simple control system.
- Investigate the performance of a given system in time and frequency domains.
- Discuss stability analysis using Root locus, Bode plots and Nyquist plots.
- Determine the controller or compensator configuration and parameter values relative to how it is connected to the controlled process given the design specifications.

Graduate Attributes (As per NBA)

Engineering Knowledge, Problem analysis, Modern Tool Usage, Life-long Learning.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 16 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.

Textbook								
1	Control Systems	Anand Kumar	PHI	2 nd Edition, 2014				
Refe	ReferenceBooks							
1	Automatic Control Systems	FaridGolnaraghi, Benjamin C. Kuo	Wiley	9 th Edition, 2010				
2	Control Systems Engineering	Norman S. Nise	Wiley	4 th Edition, 2004				
3	Modern Control Systems	Richard C Dorf et al	Pearson	11 th Edition, 2008				
4	Control Systems, Principles and Design	M.Gopal	McGaw Hill	4 th Edition, 2012				
5	Control Systems Engineering	S. Salivahanan et al	Pearson	1 st Edition, 2015				
	•		·					